By Topic

An Automatic Framework for Segmentation and Digital Inpainting of 2D Frontal Face Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sobiecki, A. ; Univ. of Groningen, Groningen, Netherlands ; Giraldi, G.A. ; Neves, L.A.P. ; Thomaz, C.E.

Nowadays applications that use face images as input for people identification have been very common. In general, the input image must be preprocessed in order to fit some normalization and quality criteria. In this paper, we propose a computational framework composed of digital image quality computation, segmentation of the damaged regions on face images by statistical decision, morphological operators and image restoration by inpainting techniques. Additionally, in this work we propose a new method for digital inpainting that considers as relevant information for such restoration the neighboring pixel intensities as well as prior information extracted from an image database. To assess the efficiency of the computational framework proposed, we have used 2D face images from public databases. The results show that our inpainting method performs similarly to the traditional ones on quasi-homogeneous regions and gives better results when the damaged areas includes complex image patterns.

Published in:

Latin America Transactions, IEEE (Revista IEEE America Latina)  (Volume:10 ,  Issue: 6 )