Cart (Loading....) | Create Account
Close category search window
 

Toward Movement Restoration of Knee Joint Using Robust Control of Powered Orthosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mefoued, S. ; Lab. of Image, Signal & Intell. Syst., Univ. of Paris-Est Creteil, Vitry-sur-Seine, France ; Mohammed, S. ; Amirat, Y.

Powered orthoses are external mechanical devices used to stabilize human limbs, to restore or to reinforce lost or weak functions of people with reduced mobility. The embodied actuators produce the necessary joint torques to compensate gravity and passive effort as well as to generate the intended human movements. Nonlinearities due to human orthosis coupling, as well as modeling errors, parameter uncertainties, and external disturbances, necessitate the use of a robust closed-loop controller in order to guarantee precise movement generation. This paper aims to present a new prototype of an actuated knee joint orthosis using a robust controller. This orthosis is designed to restore or to assist knee-joint movements of dependent people. Dynamic modeling of the lower limb/orthosis is presented, and its parameters are estimated using different techniques. Control strategies based on second-order sliding mode are applied, which show satisfactory performance compared to classical controllers in terms of tracking errors and robustness with respect to parameter uncertainties and external disturbances. Real-time experiments are conducted on healthy subjects to illustrate the efficiency of the proposed approach.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 6 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.