By Topic

Performance of the Delsarte-Goethals Frame on Clustered Sparse Vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duarte, M.F. ; Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA ; Jafarpour, S. ; Calderbank, A.R.

The Delsarte-Goethals frame (DGF) has been proposed for deterministic compressive sensing of sparse and compressible signals. Results in compressive sensing theory show that the DGF enables successful recovery of an overwhelming majority of sufficiently sparse signals. However, these results do not give a characterization of the sparse vectors for which the recovery procedure fails. In this paper, we present a formal analysis of the DGF that highlights the presence of clustered sparse vectors within its null space. This in turn implies that sparse recovery performance is diminished for sparse vectors that have their nonzero entries clustered together. Such clustered structure is present in compressive imaging applications, where commonly-used raster scannings of 2-D discrete wavelet transform representations yield clustered sparse representations for natural images. Prior work leverages this structure by proposing specially tailored sparse recovery algorithms that partition the recovery of the input vector into known clustered and unclustered portions. Alternatively, we propose new randomized and deterministic raster scannings for clustered coefficient vectors that improve recovery performance. Experimental results verify the aforementioned analysis and confirm the predicted improvements for both noiseless and noisy measurement regimes.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 8 )