By Topic

Accurate frequency-domain modeling and efficient circuit simulation of high-speed packaging interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beyene, W.T. ; Hewlett-Packard EEsof Div., Westlake Village, CA, USA ; Schutt-Aine, J.

The paper describes an efficient frequency-domain modeling and simulation method of a coupled interconnect system using scattering parameters. First, low-order rational approximations of the multiport scattering parameters are derived over a wide frequency range using a robust interpolation technique. The method applies frequency normalization, shift, and Householder QR orthogonalization to improve the stability and the accuracy when solving the resulting systems of equations. For interconnects characterized with frequency-dependent parasitic parameters, the order of the rational of approximation is reduced by using appropriate reference system. Then, the generated multiport pole-residue models are incorporated into a circuit simulator using recursive convolution. Thus, the method avoids explicit convolution, numerical transform, and artificial filtering of a large number of points that are often necessary in conventional approaches. Examples with experimental and simulated results are given to illustrate the method

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:45 ,  Issue: 10 )