Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

SAR Image Compression Using Multiscale Dictionary Learning and Sparse Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xin Zhan ; Dept. of Electron. Eng. & Inf. Sci., Univ. of Sci. & Technol. of China, Hefei, China ; Rong Zhang ; Dong Yin ; Chengfu Huo

In this letter, we focus on a new compression scheme for synthetic aperture radar (SAR) amplitude images. The last decade has seen a growing interest in the study of dictionary learning and sparse representation, which have been proved to perform well on natural image compression. Because of the special techniques of radar imaging, SAR images have some distinct properties when compared with natural images that can affect the design of a compression method. First, we introduce SAR properties, sparse representation, and dictionary learning theories. Second, we propose a novel SAR image compression scheme by using multiscale dictionaries. The experimental results carried out on amplitude SAR images reveal that, when compared with JPEG, JPEG2000, and a single-scale dictionary-based compression scheme, the proposed method is better for preserving the important features of SAR images with a competitive compression performance.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 5 )