By Topic

1/2 Nonlinear system identification: A balanced accuracy/complexity neural network approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hector M. Romero Ugalde ; Laboratoire des Sciences de, l'Information et des Systemes, UMR CNRS 7296, ENSAM, 13100, Aix en Provence, France ; Jean-Claude Carmona ; Victor M. Alvarado

Even if nonlinear system identification tends to provide highly accurate models these last decades, the user still remains interested in finding the good balance between high accuracy models and moderate complexity. In this paper, both a dedicated neural network design and a model reduction approach are proposed in order to improve this balance. The proposed neural network design helps to reduce the number of parameters of the model after the training phase preserving the estimation accuracy of the non reduced model. Even if this reduction is achieved by a convenient choice of the activation functions and the initial conditions of the synaptic weights, it nevertheless leads to models among the most encountered in the literature assuring all the interest of such method. To validate the proposed approach, we identified the Wiener-Hammerstein benchmark nonlinear system proposed in SYSID2009 [1].

Published in:

Communications, Computing and Control Applications (CCCA), 2012 2nd International Conference on

Date of Conference:

6-8 Dec. 2012