Cart (Loading....) | Create Account
Close category search window
 

On critical point avoidance among mobile terminals in healthcare monitoring applications: Saving lives through reliable communication software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chaudhry, J.A. ; Dept. of Comput. Sci. & Eng., Qatar Univ., Doha, Qatar ; Qidwai, U.A.

The advances in Microelectromechanical systems (MEMS), battery life, low powered communication standards, more capable processing units, and hybrid communication have cemented the use of mobile Wireless Body Area Networks (WBAN) in medical informatics. Although the MEMS were used in medical informatics solutions but they were highly localized, rigged, non-cooperative, and particularly non extendable. The interconnectivity of various network interfaces is the main driving force on the modern technology boom. The morphological features of mobile devices and their use in our daily lives create an opportunity to connect medical informatics systems with the main stream. It promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. When integrated with the WBAN, the mobile devices play the role of localized data diffusion, classification, and broadcast center. In this paper, the criticality of this `single point of failure' is discussed. Often the untapped flow of data to the mobile device can lead to crashing of the network. A computational model is devised in order to pre estimate the device resource availability matrix and data flow management without creating the denial of service. The speed mismatch due to resource binding violation on the part of the hand held device can be reported and capped before the data loss heeds un noticed. The techniques proposed are analyzed and tested on a test bed, specifically designed for monitoring remote patient vitals. The results obtained show marked improvement from the methods proposed in the contemporary systems.

Published in:

Open Systems (ICOS), 2012 IEEE Conference on

Date of Conference:

21-24 Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.