By Topic

Low-Power Circuit Analysis and Design Based on Heterojunction Tunneling Transistors (HETTs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yoonmyung Lee ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Daeyeon Kim ; Jin Cai ; Lauer, I.
more authors

The theoretical lower limit of subthreshold swing in mosfets (60 mV/decade) significantly restricts low-voltage operation since it results in a low ON -to- OFF current ratio at low supply voltages. This paper investigates extremely low-power circuits based on new Si/SiGe heterojunction tunneling transistors (HETTs) that have a subthreshold swing of . Device characteristics, as determined through technology computer aided design tools, are used to develop a Verilog-A device model to simulate and evaluate a range of HETT-based circuits. We show that an HETT-based ring oscillator (RO) shows a 9-19 times reduction in dynamic power compared to a CMOS RO. We also explore two key differences between HETTs and traditional mosfets, namely, asymmetric current flow and increased Miller capacitance, analyze their effect on circuit behavior, and propose methods to address them. HETT characteristics have the most dramatic impact on static random access memory (SRAM) operation and we propose a novel seven-transistor HETT-based SRAM cell topology to overcome, and take advantage of, the asymmetric current flow. This new HETT SRAM design achieves 7-37 times reduction in leakage power compared to CMOS.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 9 )