By Topic

A 1.5-W single-chip MPEG-2 MP@ML video encoder with low power motion estimation and clocking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Mizuno, M. ; Microelectron. Res. Labs., NEC Corp., Kanagawa, Japan ; Ooi, Y. ; Hayashi, N. ; Goto, J.
more authors

A 1.5-W single-chip MPEG-2 MP@ML real-time video encoder large scale integrated circuit (LSI) has been developed. To form an MPEG-2 encoder system, we employ two 16-Mb synchronous DRAM's, a microprocessor unit (MPU), and an audio encoder LSI. Owing to a two-step hierarchical search scheme and a novel adaptive search window scheme, the search range of motion estimation is -48/+47 horizontal and -96/+15.5 vertical, and the pseudo search range, which is the size when the location of the search window is adaptively shifted, is -96/+95 horizontal and -32/+31.5 vertical. We have also developed low-power clocking techniques, i.e., demand-clock controller, local-clock controller, and low-power flip-flops, which can eliminate waste of power in clocking. We have successfully fabricated these new designs as a low-power single-chip MPEG-2 encoder LSI. The operating frequency except for a synchronous DRAM interface unit and a video in/out unit is 54 MHz. The supply voltage to the first and second search engines in a motion estimation unit can be successfully lowered to 2.5 V and the others are 3.3 V. Into a 12.45×12.45 mm2 chip with 0.35-μm CMOS and triple-metal layer technology are integrated 3.1 M transistors

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:32 ,  Issue: 11 )