Cart (Loading....) | Create Account
Close category search window
 

Pulsed Thermally Assisted Magnetic Recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Yiming Wang ; Headway Technol., Milpitas, CA, USA ; Maletzky, T. ; Jin, E.X. ; Dayu Zhou
more authors

In thermally assisted magnetic recording, one of the most important issues is the reliability of the near-field transducer and the magnetic recording head. When the near-field transducer transfers the optical energy to the media through coupling from the waveguide, it inevitably heats itself and its surrounding area, such as the magnetic recording head, which tends to cause long-term performance degradation. To mitigate the problem, one possible solution is to apply a pulsed laser beam instead of a constant one. In this paper, the performance characteristics of the pulsed thermally assisted magnetic recording are analyzed by modeling. Simulation results show that similar recording performance can be achieved through a much reduced laser beam duty cycle (~ 30%).

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.