By Topic

A Microgrid Energy Management System Based on the Rolling Horizon Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Palma-Behnke, R. ; Energy Center, Univ. of Chile, Santiago, Chile ; Benavides, C. ; Lanas, F. ; Severino, B.
more authors

A novel energy management system (EMS) based on a rolling horizon (RH) strategy for a renewable-based microgrid is proposed. For each decision step, a mixed integer optimization problem based on forecasting models is solved. The EMS provides online set points for each generation unit and signals for consumers based on a demand-side management (DSM) mechanism. The proposed EMS is implemented for a microgrid composed of photovoltaic panels, two wind turbines, a diesel generator and an energy storage system. A coherent forecast information scheme and an economic comparison framework between the RH and the standard unit commitment (UC) are proposed. Solar and wind energy forecasting are based on phenomenological models with updated data. A neural network for two-day-ahead electric consumption forecasting is also designed. The system is tested using real data sets from an existent microgrid in Chile (ESUSCON). The results based on different operation conditions show the economic sense of the proposal. A full practical implementation of the system for ESUSCON is envisioned.

Published in:

Smart Grid, IEEE Transactions on  (Volume:4 ,  Issue: 2 )