By Topic

Derivation of Intertemporal Targets for Large Pumped Hydro Energy Storage With Stochastic Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. P. Deane ; Sustainable Energy Research Group, Environmental Research Institute, University College Cork, Ireland ; E. J. McKeogh ; B. P. O. Gallachoir

This paper models large pumped hydro energy storage in a future power system where variable generation, primarily in the form of wind generation, is the dominant source of power generation. The research question posed is how to formulate day-ahead and week-ahead reservoir targets for pumped hydro energy storage in the context of wind forecast uncertainty. The innovation in the work is the use of historical wind data series and wind forecasts to derive a management strategy for the operation of large PHES using stochastic optimization that outperforms current methods in power systems with significant wind generation. This approach derives intertemporal targets for large pumped hydro energy storage that reduce overall system costs when compared to targets derived using a conventional method.

Published in:

IEEE Transactions on Power Systems  (Volume:28 ,  Issue: 3 )