Cart (Loading....) | Create Account
Close category search window
 

The Fokker-Planck Equation for Power System Stability Probability Density Function Evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keyou Wang ; Dept. of Electr. Eng., Shanghai JiaoTong Univ., Shanghai, China ; Crow, M.L.

This paper presents an analysis of the evolution of the probability density function of the dynamic trajectories of a single machine infinite bus power system. The probability density function can be used to determine the impact of random (stochastic) load perturbations on system stability. The evolution of the state probability density function over time leads to several interesting observations regarding stability regions as a function of damping parameter. The Fokker-Planck equation (FPE) is used to describe the evolution of the probability density of the states. The FPE is solved numerically using PDE solvers (such as finite difference method). Based on the results, the qualitative changes of the stationary density produce peak-like, ridge-like and other complicated shapes. Lastly, the numerical FPE solution combined with SMIB equivalent techniques lay the framework extended to the multimachine system.

Published in:

Power Systems, IEEE Transactions on  (Volume:28 ,  Issue: 3 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.