Cart (Loading....) | Create Account
Close category search window
 

Adaptive Time Domain Sparse Wavelet Approximations to Transient Space-Time Electromagnetic Wave Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Ngoly, A. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada ; McFee, S.

The purpose of this contribution is to introduce a method for constructing temporally adaptive, sparse, accurate, efficient and reliable representations of large scale, discretely sampled transient space-time electromagnetic wave fields, through the use of sparse wavelet approximations. The temporally adaptive sparse wavelet approximations are achieved by performing a three step computational process during a time domain electromagnetic simulation. The computational process consists of a forward Fast Wavelet Transform (FWT) step, an adaptive wavelet coefficient truncation step, and an inverse FWT step. The sparse approximation of a space-time electromagnetic wave field results in retaining wavelet coefficients with the largest magnitudes, localized in regions of the solution domain with high electromagnetic energy density concentrations. Numerical results that demonstrate the applicability and versatility of the approach are provided. Rigorous error analyses are also provided to demonstrate the accuracy of the method.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.