By Topic

Control of Microstructure and Magnetic Properties of FePt Films With TiN Intermediate Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
K. F. Dong$^{1}$ Department of Materials Science and Engineering,, National University of Singapore,, Singapore, Singapore ; H. H. Li ; J. F. Hu ; Y. G. Peng
more authors

The effects of a TiN intermediate layer on the microstructure and magnetic properties of the FePt films were investigated. It was found that the TiN layer could effectively block the diffusion of Cr into the FePt film. The good epitaxial relationships among these layers were revealed from the transmission electron microscopy (TEM) results. With introducing TiN intermediate layer the chemical ordering and magnetic properties of FePt films significantly improved. The FePt film with 5 nm TiN exhibited a high perpendicular coercivity of 13.7 kOe and a low in-plane coercivity of 0.24 kOe, resulting from the combined contribution of TiN (200) orientation, TiN layer roughness and the effective block of Cr diffusion. Moreover, with doping C into the FePt-SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling, the grain size of FePt films decreased, and well-separated FePt grains and uniform size were formed. By optimizing the sputtering process, the [FePt (4 nm)-SiNx 40 vol·% ]- 20 vol·% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small FePt grain size of 5.6 nm in average diameter was obtained, which are suitable for ultrahigh density perpendicular recording.

Published in:

IEEE Transactions on Magnetics  (Volume:49 ,  Issue: 2 )