By Topic

A Millimeter-Scale Energy-Autonomous Sensor System With Stacked Battery and Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
11 Author(s)
Fojtik, M. ; Univ. of Michigan, Ann Arbor, MI, USA ; Daeyeon Kim ; Chen, G. ; Yu-Shiang Lin
more authors

An 8.75 mm3 microsystem targeting temperature sensing achieves zero-net-energy operation using energy harvesting and ultra-low-power circuit techniques. A 200 nW sensor measures temperature with -1.6 °C/+3 °C accuracy at a rate of 10 samples/sec. A 28 pJ/cycle, 0.4 V, 72 kHz ARM Cortex-M3 microcontroller processes temperature data using a 3.3 fW leakage per bit SRAM. Two 1 mm2 solar cells and a thin-film Li battery power the microsystem through an integrated power management unit. The complete microsystem consumes 7.7 μ W when active and enters a 550 pW data-retentive standby mode between temperature measurements. The microsystem can process temperature data hourly for 5 years using only the initial energy stored in the battery. This lifetime is extended indefinitely using energy harvesting to recharge the battery, enabling energy-autonomous operation.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 3 )