Cart (Loading....) | Create Account
Close category search window
 

Resource Mapping at Tidal Energy Sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Palodichuk, M. ; Northwest Nat. Marine Renewable Energy Center, Univ. of Washington, Seattle, WA, USA ; Polagye, B. ; Thomson, J.

Station keeping, a vessel-based spatial surveying method for resolving details of the hydrokinetic resource, is presented in the context of the general methodology and also for the specific case of a survey conducted in northern Admiralty Inlet, Puget Sound, WA, in June 2011. The acoustic Doppler current profiler (ADCP) measurements collected during the June 2011 survey were part of a broader effort to characterize the resource at this location before tidal turbine installation. Autonomous bottom-lander (bottom-mounted) ADCP measurements are used to evaluate the accuracy with which data collected from this vessel-based survey reflect stationary measurements and also to analyze the potential for cycle-to-cycle variations in the conclusions drawn. Results indicate good agreement between shipboard and bottom-mounted observations in capturing spatial resource differences. Repeated surveys over several tidal cycles are required to obtain results consistent with long-term observations. Station-keeping surveys help to optimize bottom-mounted ADCP deployments that are then used to estimate turbine power generation potential and make final siting decisions.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:38 ,  Issue: 3 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.