By Topic

A low-power microprocessor based on resonant energy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
W. C. Athas ; Inf. Sci. Inst., Univ. of Southern California, Marina del Rey, CA, USA ; N. Tzartzanis ; L. J. Svensson ; L. Peterson

We describe AC-1, a CMOS microprocessor that derives most of its operating power from the clock signals rather than from dc supplies. Clock-powered circuit elements are selectively used to drive high-fan-out nodes. An inductor-based, all-resonant clock-power generator allows us to recover 85% of the clock-drive energy. The measured top frequency for the microprocessor was 58.8 MHz at 26.2 mW. The resulting overall decrease in dissipation ranges from four to five times at clock frequencies from 35 to 54 MHz. We also compare the performance of the processor to a reimplementation in static logic

Published in:

IEEE Journal of Solid-State Circuits  (Volume:32 ,  Issue: 11 )