By Topic

Image-based gesture recognition for user interaction with mobile companion-based assistance systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Saxen, F. ; Inst. for Electron., Signal Process. & Commun., Otto-von-Guericke-Univ., Magdeburg, Germany ; Rashid, O. ; Al-Hamadi, A. ; Adler, S.
more authors

In this paper, we present image-based methods for robust recognition of static and dynamic hand gestures in real-time. These methods are used for an intuitive interaction with an assistance-system in which the skin-tones are used to segment the hands. The segmentation builds the basis of feature extraction for the static and dynamic gestures. In the static gestures, the activation of particular region leads us to associated actions whereas HMM classifier is used to extract the dynamic gestures dependent upon the flow. The assistance-system supports the workers in manual working tasks in the context of assembling complex products. This paper is focused on the interaction of the user with this system and describes the work in progress with the initial results from an application scenario.

Published in:

Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on

Date of Conference:

27-29 Nov. 2012