By Topic

Analysis and monitoring of a high density traffic flow at T-intersection using statistical computer vision based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hashmi, M.F. ; Dept. of Electron. Eng., Visvesvaraya Nat. Inst. of Technol., Nagpur, India ; Keskar, A.G.

A reliable traffic flow monitoring and traffic analysis approach using computer vision techniques has been proposed in this paper. The exponential increase in traffic density at urban intersections in the past few decades has raised precious and challenging demands to computer vision algorithms and technological solutions. The focus of this paper is to suggest a statistical based approach to determine the traffic parameters at heavily crowded urban intersections. The algorithm in addition to accurate tracking and counting of freeway traffic also offers high efficiency for determining vehicle count at a high traffic density T-intersection. The system uses Intel Open CV library for image processing. The implementation of algorithm is done using C++. The real time video sequence is obtained from a stationary camera placed atop a high building overlooking the particular T intersection. This paper suggests a dynamic method where each vehicle at a T intersection is passed through a number of detection zones and the final count of vehicles is derived from a statistical equation.

Published in:

Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on

Date of Conference:

27-29 Nov. 2012