Cart (Loading....) | Create Account
Close category search window
 

Effects of air resistance on AT-cut quartz thickness-shear resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yangyang Chen ; Sch. of Eng., Ningbo Univ., Ningbo, China ; Ji Wang ; Jianke Du ; Weiping Zhang
more authors

We study theoretically the effects of air resistance on an AT-cut quartz plate thickness-shear mode resonator. Mindlin's two-dimensional equations for coupled thickness-shear and flexural motions of piezoelectric plates are employed for the crystal resonator. The equations of a Newtonian fluid and the equations of linear acoustics are used for the shear and compressive waves in the air surrounding the resonator, respectively. Solutions for free and electrically forced vibrations are obtained. The impedance of the resonator is calculated. The effects of air resistance are examined. It is found that air viscosity causes a relative frequency shift of the order of ppm. When the material quality factor of quartz Q = 105, the air viscosity and compressibility both have significant effects on resonator impedance. For resonators with larger aspect ratios the effects of air resistance are weaker, and the effect of air compressibility is weaker than air viscosity.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

February 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.