Cart (Loading....) | Create Account
Close category search window

The Intercalibration of Geostationary Visible Imagers Using Operational Hyperspectral SCIAMACHY Radiances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Doelling, D.R. ; Climate Sci. Branch, NASA Langley Res. Center, Hampton, VA, USA ; Scarino, B.R. ; Morstad, D. ; Gopalan, A.
more authors

Spectral band differences between sensors can complicate the process of intercalibration of a visible sensor against a reference sensor. This can be best addressed by using a hyperspectral reference sensor whenever possible because they can be used to accurately mitigate the band differences. This paper demonstrates the feasibility of using operational Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) large-footprint hyperspectral radiances to calibrate geostationary Earth-observing (GEO) sensors. Near simultaneous nadir overpass measurements were used to compare the temporal calibration of SCIAMACHY with Aqua Moderate Resolution Imaging Spectroradiometer band radiances, which were found to be consistent to within 0.44% over seven years. An operational SCIAMACHY/GEO ray-matching technique was presented, along with enhancements to improve radiance pair sampling. These enhancements did not bias the underlying intercalibration and provided enough sampling to allow up to monthly monitoring of the GEO sensor degradation. The results of the SCIAMACHY/GEO intercalibration were compared with other operational four-year Meteosat-9 0.65-μm calibration coefficients and were found to be within 1% of the gain, and more importantly, it had one of the lowest temporal standard errors of all the methods. This is more than likely that the GEO spectral response function could be directly applied to the SCIAMACHY radiances, whereas the other operational methods inferred a spectral correction factor. This method allows the validation of the spectral corrections required by other methods.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.