Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Observer-Based Adaptive Decentralized Fuzzy Fault-Tolerant Control of Nonlinear Large-Scale Systems With Actuator Failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaocheng Tong ; Dept. of Math., Liaoning Univ. of Technol., Jinzhou, China ; Baoyu Huo ; Yongming Li

This paper investigates the adaptive fuzzy decentralized fault-tolerant control (FTC) problem for a class of nonlinear large-scale systems in strict-feedback form. The considered nonlinear system contains the unknown nonlinear functions, i.e., unmeasured states and actuator faults, which are modeled as both loss of effectiveness and lock-in-place. With the help of fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive observer is designed to estimate the unmeasured states. By combining the backstepping technique with the nonlinear FTC theory, a novel adaptive fuzzy decentralized FTC scheme is developed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are bounded, and the tracking errors between the system outputs and the reference signals converge to a small neighborhood of zero by appropriate choice of the design parameters. Simulation results are provided to show the effectiveness of the control approach.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )