By Topic

A Nonstochastic Information Theory for Communication and State Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nair, G.N. ; Department of Electrical and Electronic Engineering, University of Melbourne, Australia

In communications, unknown variables are usually modelled as random variables, and concepts such as independence, entropy and information are defined in terms of the underlying probability distributions. In contrast, control theory often treats uncertainties and disturbances as bounded unknowns having no statistical structure. The area of networked control combines both fields, raising the question of whether it is possible to construct meaningful analogues of stochastic concepts such as independence, Markovness, entropy and information without assuming a probability space. This paper introduces a framework for doing so, leading to the construction of a maximin information functional for nonstochastic variables. It is shown that the largest maximin information rate through a memoryless, error-prone channel in this framework coincides with the block-coding zero-error capacity of the channel. Maximin information is then used to derive tight conditions for uniformly estimating the state of a linear time-invariant system over such a channel, paralleling recent results of Matveev and Savkin.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 6 )