Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

A New Millimeter-Wave Fixture Deembedding Method Based on Generalized Cascade Network Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Loo, X.S. ; GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore, Singapore ; Yeo, K.S. ; Chew, K.W.J. ; Chan, L.H.K.
more authors

In this letter, a universal cascade-based deembedding technique was presented for on-wafer characterization of the RF CMOS device. As compared with existing deembedding approaches, it is developed based on unique combinations of two THRU structures that enable efficient deembedding of fixture parasitics without any inaccurate lumped approximation or requirement of known standards. The proposed deembedding technique is validated on 0.13- μm CMOS devices and has been proven to be more accurate than existing lumped and cascade-based deembedding techniques. As a result, it gives deeper physical prediction on transistor gate capacitances and transconductance. Therefore, it is highly suitable to be applied for device characterization at millimeter-wave frequencies.

Published in:

Electron Device Letters, IEEE  (Volume:34 ,  Issue: 3 )