Cart (Loading....) | Create Account
Close category search window
 

Limited bandwidth to affect processor design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Burger, D. ; Dept. of Comput. Sci., Wisconsin Univ., Madison, WI, USA ; Goodman, J.R. ; Kagi, A.

This paper quantifies and compares the performance impacts of memory latencies and finite bandwidth. We show that the implementation of aggressive latency tolerance techniques aggravates stalls due to finite memory bandwidth, which actually become more significant than stalls resulting from uncongested memory latency alone. We expect that memory bandwidth limitations across the processor pins will drive significant architectural change. An execution-driven simulation measures the time that several SPEC95 benchmarks spend stalled for memory latency, limited-memory bandwidth and computing

Published in:

Micro, IEEE  (Volume:17 ,  Issue: 6 )

Date of Publication:

Nov/Dec 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.