Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Check Node Reliability-Based Scheduling for BP Decoding of Non-Binary LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guojun Han ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Yong Liang Guan ; Xinmei Huang

Scheduling strategy is considered an important aspect of belief-propagation (BP) decoding of low-density parity-check (LDPC) codes because it affects the decoder's convergence rate, decoding complexity and error-correction performance. In this paper, we propose two new scheduling strategies for the BP decoding of non-binary LDPC (NB-LDPC) codes. Both the strategies are devised based on the concept of check node reliability and employ a heuristically defined threshold which can adapt to the communication channel variations. As the scheduling strategies only update a subset of the check nodes in each iteration, they result in reduced iteration cost. Furthermore, since the BP performs suboptimally for finite-length LDPC codes, especially for short-length LDPC codes, by enhancing the message propagation over the Tanner Graphs of short-length NB-LDPC codes, the new scheduling strategies can even improve the error-correction performances of BP decoding. Simulation results demonstrate that the new scheduling strategies provide good performance/complexity tradeoffs.

Published in:

Communications, IEEE Transactions on  (Volume:61 ,  Issue: 3 )