By Topic

Capturing Social Data Evolution Using Graph Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maria Giatsoglou ; Aristotle University ; Athena Vakali

The fast and unpredictable evolution of social data poses challenges for capturing user activities and complex associations. Evolving social graph clustering promises to uncover the dynamics of latent user and content patterns. This Web extra overviews evolving data clustering approaches.

Published in:

IEEE Internet Computing  (Volume:17 ,  Issue: 1 )