Cart (Loading....) | Create Account
Close category search window
 

Information-theoretic considerations for symmetric, cellular, multiple-access fading channels. II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shamai, S. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Wyner, A.D.

For pt.I see ibid., vol.43, no.6, p.1877-94 (1997). A simple idealized linear (and planar) uplink, cellular, multiple-access communication model, where only adjacent cell interference is present and all signals may experience fading is considered. Shannon theoretic arguments are invoked to gain insight into the implications on performance of the main system parameters and multiple-access techniques. The model treated in Part I (Shamai, 1997) is extended here to account for cell-site receivers that may process also the received signal at an adjacent cell site, compromising thus between the advantage of incorporating additional information from other cell sites on one hand and the associated excess processing complexity on the other. Various settings which include fading, time-division multiple access (TDMA), wideband (WB), and (optimized) fractional inter-cell time sharing (ICTS) protocols are investigated and compared. In this case and for the WB approach and a large number of users per cell it is found, surprisingly, that fading may enhance performance in terms of Shannon theoretic achievable rates. The linear model is extended to account for general linear and planar configurations. The effect of a random number of users per cell is investigated and it is demonstrated that randomization is beneficial. Certain aspects of diversity as well as some features of TDMA and orthogonal code-division multiple access (CDMA) techniques in the presence of fading are studied in an isolated cell scenario

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 6 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.