Cart (Loading....) | Create Account
Close category search window
 

Averaging bounds for lattices and linear codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Loeliger, H.-A. ; Endora Tech AG, Basel, Switzerland

General random coding theorems for lattices are derived from the Minkowski-Hlawka theorem and their close relation to standard averaging arguments for linear codes over finite fields is pointed out. A new version of the Minkowski-Hlawka theorem itself is obtained as the limit, for p→∞, of a simple lemma for linear codes over GF(p) used with p-level amplitude modulation. The relation between the combinatorial packing of solid bodies and the information-theoretic “soft packing” with arbitrarily small, but positive, overlap is illuminated. The “soft-packing” results are new. When specialized to the additive white Gaussian noise channel, they reduce to (a version of) the de Buda-Poltyrev result that spherically shaped lattice codes and a decoder that is unaware of the shaping can achieve the rate 1/2 log2 (P/N)

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 6 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.