By Topic

Distributed Consensus Tracking for Multiple Uncertain Nonlinear Strict-Feedback Systems Under a Directed Graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sung Jin Yoo ; Sch. of Electr. & Electron. Eng., Chung-Ang Univ., Seoul, South Korea

In this brief, we study the distributed consensus tracking control problem for multiple strict-feedback systems with unknown nonlinearities under a directed graph topology. It is assumed that the leader's output is time-varying and has been accessed by only a small fraction of followers in a group. The distributed dynamic surface design approach is proposed to design local consensus controllers in order to guarantee the consensus tracking between the followers and the leader. The function approximation technique using neural networks is employed to compensate unknown nonlinear terms induced from the controller design procedure. From the Lyapunov stability theorem, it is shown that the consensus errors are cooperatively semiglobally uniformly ultimately bounded and converge to an adjustable neighborhood of the origin.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )