Cart (Loading....) | Create Account
Close category search window
 

Feature-Based Image Patch Approximation for Lung Tissue Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Song ; Biomed. & Multimedia Inf. Technol. (BMIT) Res. Group, Univ. of Sydney, Sydney, NSW, Australia ; Weidong Cai ; Yun Zhou ; Feng, D.D.

In this paper, we propose a new classification method for five categories of lung tissues in high-resolution computed tomography (HRCT) images, with feature-based image patch approximation. We design two new feature descriptors for higher feature descriptiveness, namely the rotation-invariant Gabor-local binary patterns (RGLBP) texture descriptor and multi-coordinate histogram of oriented gradients (MCHOG) gradient descriptor. Together with intensity features, each image patch is then labeled based on its feature approximation from reference image patches. And a new patch-adaptive sparse approximation (PASA) method is designed with the following main components: minimum discrepancy criteria for sparse-based classification, patch-specific adaptation for discriminative approximation, and feature-space weighting for distance computation. The patch-wise labelings are then accumulated as probabilistic estimations for region-level classification. The proposed method is evaluated on a publicly available ILD database, showing encouraging performance improvements over the state-of-the-arts.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.