By Topic

Multiscale Entropy Analysis of Different Spontaneous Motor Unit Discharge Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xu Zhang ; Sensory Motor Performance Program , Rehabilitation Institute of Chicago, Chicago, IL, USA ; Xiang Chen ; Paul E. Barkhaus ; Ping Zhou

This study explores a novel application of multiscale entropy (MSE) analysis for characterizing different patterns of spontaneous electromyogram (EMG) signals including sporadic, tonic and repetitive spontaneous motor unit discharges, and normal surface EMG baseline. Two algorithms for MSE analysis, namely, the standard MSE and the intrinsic mode entropy (IMEn) (based on the recently developed multivariate empirical mode decomposition method), were applied to different patterns of spontaneous EMG. Significant differences were observed in multiple scales of the standard MSE and IMEn analyses (<;i>p<;/i> <; 0.001) for any two of the spontaneous EMG patterns, while such significance may not be observed from the single-scale entropy analysis. Compared to the standard MSE, the IMEn analysis facilitates usage of a relatively low scale number to discern entropy difference among various patterns of spontaneous EMG signals. The findings from this study contribute to our understanding of the nonlinear dynamic properties of different spontaneous EMG patterns, which may be related to spinal motoneuron or motor unit health.

Published in:

IEEE Journal of Biomedical and Health Informatics  (Volume:17 ,  Issue: 2 )