By Topic

Synchronization of passively mode-locked erbium-doped fiber lasers and its application to optical communication networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
M. Jiang ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; K. H. Ahn ; X. -D. Cao ; P. Dasika
more authors

We synchronized two passively mode-locked erbium-doped fiber lasers using a phase lock loop with a large dynamic range and bandwidth, which is realized by using a novel acoustooptic-modulator-grating scheme. Cross-correlation of the two lasers shows the interlaser jitter is under 2 ps (same as the laser pulse width) for period as long as hours. To prove the quality of phase locking, we apply synchronized lasers in two all-optical network applications, one of which requires the lasers to have the same wavelength and the second requires the lasers to be at different wavelengths. In the single wavelength application, the synchronized lasers drive a cascade of two low-birefringence, polarization maintaining, optical logic gates with switching timing window of 4 and 5 ps, respectively. We obtain nonlinear transmission of ~50% at a switching energy of 8 pJ and contrast ratio of 16 dB, which are comparable performance as that obtained using a single laser. In the different wavelength application, we use 0.8 ps pulses to switch 2 ps pulses in a two-wavelength nonlinear optical loop mirror demultiplexer with timing window of 5.5 ps. Stable switching is reached at a efficiency as high as 90% at switching energy of 0.8 pJ, and a contrast ratio of 20 dB. Excellent agreement is found between the experimental data and the simulated results, which exclude the timing jitter

Published in:

Journal of Lightwave Technology  (Volume:15 ,  Issue: 11 )