By Topic

Effect of Au thickness on laser beam penetration in semiconductor laser packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wood-Hi Cheng ; Dept. of Electro.-Opt. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Szu-Chun Wang ; Yi-Dian Yang ; Sien Chi
more authors

Comprehensive measurements of the dependence of the weld width, penetration depth, and joint strength on the Au coating thickness in laser welding techniques for semiconductor laser packages are presented. The results obtained from the Invar-Invar joints show that the welded joints with thick Au coating exhibit narrower weld width, shallower penetration, and hence less joint strength than those the package joints with thin Au coating. A finite-element method (FEM) has been carried out on the effect of Au thickness on laser beam penetration in Invar-Invar joints. This method has been employed successfully to predict the laser beam penetration in laser welded Au-coated materials that the weld width and the penetration depth are reduced as the Au coating thickness increases. The likely cause for the reduction is the increased thermal conduction of thicker Au in the welded region. In addition to Au coating, the effect of Ni coating on laser beam penetration is also presented. Detailed knowledge of the effect of Au coating thickness on laser beam penetration is important for the practical design and fabrication of reliable optoelectronic packaging having laser welded Au-coated materials

Published in:

Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on  (Volume:20 ,  Issue: 4 )