Cart (Loading....) | Create Account
Close category search window

Tunnel-field-effect-transistor based gas-sensor: Introducing gas detection with a quantum-mechanical transducer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sarkar, Deblina ; Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA ; Gossner, Harald ; Hansch, Walter ; Banerjee, Kaustav

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A gas-sensor based on tunnel-field-effect-transistor (TFET) is proposed that leverages the unique current injection mechanism in the form of quantum-mechanical band-to-band tunneling to achieve substantially improved performance compared to conventional metal-oxide-semiconductor field-effect-transistors (MOSFETs) for detection of gas species under ambient conditions. While nonlocal phonon-assisted tunneling model is used for detailed device simulations, in order to provide better physical insights, analytical formula for sensitivity is derived for both metal as well as organic conducting polymer based sensing elements. Analytical derivations are also presented for capturing the effects of temperature on sensor performance. Combining the developed analytical and numerical models, intricate properties of the sensor such as gate bias dependence of sensitivity, relationship between the required work-function modulation and subthreshold swing, counter-intuitive increase in threshold voltage for MOSFETs and reduction in tunneling probability for TFETs with temperature are explained. It is shown that TFET gas-sensors can not only lead to more than 10 000× increase in sensitivity but also provide design flexibility and immunity against screening of work-function modulation through non-specific gases as well as ensure stable operation under temperature variations.

Published in:

Applied Physics Letters  (Volume:102 ,  Issue: 2 )

Date of Publication:

Jan 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.