By Topic

Low-frequency current ripple reduction in front-end boost converter with single-phase inverter load

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ale Ahmad, A. ; Electr. & Electron. Eng., Iran Univ. of Sci. & Technol., Tehran, Iran ; Abrishamifar, A. ; Samadi, S.

The low-frequency current ripple that always appears at the input of the single-phase DC/AC inverters decreases the lifetime of DC voltage sources, such as fuel cells and chemical batteries. In this study, based on series and parallel feedback theory, a proportional-integral (PI) controller is designed for the front-end boost converter in two-stage power converters. This controller increases the output impedance of the boost converter, which reduces the low-frequency current ripple at the input of this two-stage converter. Since the designed controller corrupts the dynamic response of the boost converter, the DC-link voltage severely over/undershoots in step load conditions. Overcoming this issue by employing a non-linear gain in the forward path is shown. By applying this proposed technique, the output voltage over/undershoot stays in an acceptable range. Therefore both the low-frequency input current ripple and the DC-link over/undershoot problems disappear simultaneously without employing any additional equipment, especially a bulky DC capacitor. The simulation and experimental results for a 2.5 kW prototype confirm the performance of the proposed idea.

Published in:

Power Electronics, IET  (Volume:5 ,  Issue: 9 )