By Topic

Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karayiannis, N.B. ; Dept. of Electr. Eng., Houston Univ., TX, USA ; Mi, G.W.

This paper proposes a framework for constructing and training radial basis function (RBF) neural networks. The proposed growing radial basis function (GRBF) network begins with a small number of prototypes, which determine the locations of radial basis functions. In the process of training, the GRBF network gross by splitting one of the prototypes at each growing cycle. Two splitting criteria are proposed to determine which prototype to split in each growing cycle. The proposed hybrid learning scheme provides a framework for incorporating existing algorithms in the training of GRBF networks. These include unsupervised algorithms for clustering and learning vector quantization, as well as learning algorithms for training single-layer linear neural networks. A supervised learning scheme based on the minimization of the localized class-conditional variance is also proposed and tested. GRBF neural networks are evaluated and tested on a variety of data sets with very satisfactory results

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 6 )