By Topic

Learning to Photograph: A Compositional Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bingbing Ni ; Adv. Digital Sci. Center, Singapore, Singapore ; Mengdi Xu ; Bin Cheng ; Meng Wang
more authors

In this paper, we present an intelligent photography system which can recommend the most user-favored view rectangle for arbitrary camera input, from a photographic compositional perspective. Automating this process is difficult, due to the subjectivity of human's aesthetics judgement and large variations of image contents, where heuristic compositional rules lack generality. Motivated by the recent prevalence of photo-sharing websites, e.g., Flickr.com, we develop a learning-based framework which discovers the underlying aesthetic photographic compositional structures from a large set of user-favored online sharing photographs and utilizes the implicitly shared knowledge among the professional photographers for aesthetically optimal view recommendation. In particular, we propose an Omni-Range Context method which explicitly encodes the spatial and geometric distributions of various visual elements in the photograph as well as cooccurrence characteristics of visual element pairs by using generative mixture models. Searching the optimal view rectangle is then formulated as maximum a posterior by imposing the trained prior distributions along with additional photographic constraints. The proposed system has the potential to operate in near real-time. Comprehensive user studies well demonstrate the effectiveness of the proposed framework for aesthetically optimal view recommendation.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 5 )