By Topic

MetOp-A/IASI Observed Continental Thermal IR Emissivity Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daniel K. Zhou ; NASA Langley Research Center, Hampton, VA, USA ; Allen M. Larar ; Xu Liu

Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth's environment. Long-term and large-scale observations that are needed for global monitoring and research can only be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last five and half years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature Ts and spectral emissivity εν) with a spatial resolution of 0.5 × 0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. Continental IR spectral emissivity derived from satellite ultraspectral IR measurements reveals its variation depending on surface weather and climate conditions. Variation behaviors of continental IR spectral emissivity, associated with the seasonal change as well as weather and climate conditions are initially captured by IASI measurements and will be continuously monitored as provided by the satellite measurements. Surface εν retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface εν together with Ts from current and future operational weather satellites can be utilized as a means of long-term and large-scale monitoring of Earth's surface weather environment and associated changes.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 3 )