By Topic

Fire Occurrence Probability Mapping of Northeast China With Binary Logistic Regression Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haijun Zhang ; Sch. of Environ. Sci. & Tourism, Nanyang Normal Univ., Nanyang, China ; Xiaoyong Han ; Sha Dai

Fire occurrence probability mapping provides a detailed understanding of the spatial distribution of the fire occurrence probability and it is useful in fire management. The binary logistic regression (BLR) can combine continuous and categorical variables together in the analysis. Here we use BLR analysis to map the fire occurrence probability of Northeast China which has the largest forest area in China. Ten predictor variables including altitude (Alt), slope (Sl), aspect (As), distance to the nearest village (Dv), distance to the nearest path (Dp), distance to the nearest water bodies (Dw), land cover (LC), Fuel Moisture Content (FMC), land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) are employed and multi-temporal random sampling methodology is used to create the training subset, and then the training subset is utilized to build the fire occurrence probability spatial model. Here, a backwards stepwise procedure based on the likelihood ratio estimation is used in the model development. Assessed by the area under a relative operating characteristic (ROC) curve (AUC-area under curve) procedure, the model's fitness accuracy is 84.2%. The interpretations of the estimated coefficients show that NDVI best explain fire occurrence in the region. Evaluated by the inner testing and independent validation, better reliability and discrimination capacity of the developed spatial model can be concluded from 17 fires among the total 18 fires. Good performance suggests that the developed model is valuable to fire managers or can be directly applied to fire management in Northeast China.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 1 )