By Topic

A Comparative Study on Linear Regression-Based Noise Estimation for Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lianru Gao ; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China ; Qian Du ; Bing Zhang ; Wei Yang
more authors

In the traditional signal model, signal is assumed to be deterministic, and noise is assumed to be random, additive and uncorrelated to the signal component. A hyperspectral image has high spatial and spectral correlation, and a pixel can be well predicted using its spatial and/or spectral neighbors; any prediction error can be considered from noise. Using this concept, several algorithms have been developed for noise estimation for hyperspectral images. However, these algorithms have not been rigorously analyzed with a unified scheme. In this paper, we conduct a comparative study for such linear regression-based algorithms using simulated images with different signal-to-noise ratio (SNR) and real images with different land cover types. Based on experimental results, instructive guidance is concluded for their practical applications.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 2 )