Cart (Loading....) | Create Account
Close category search window
 

Magnetization reversal in Nd-Fe-B based nanocomposites as seen by magnetic small-angle neutron scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Bick, Jens-Peter ; Laboratory for the Physics of Advanced Materials, University of Luxembourg, 162A Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg ; Honecker, Dirk ; Dobrich, Frank ; Suzuki, Kiyonori
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4776708 

We have studied the magnetization-reversal process of a Nd2Fe14B/Fe3B nanocomposite using small-angle neutron scattering. Based on the computation of the autocorrelation function of the spin misalignment, we have estimated the characteristic size lC of spin inhomogeneities around the Nd2Fe14B nanoparticles. The quantity lC approaches a constant value of about 12.5 nm (average Nd2Fe14B particle radius) at 14 T and takes on a maximum value of about 18.5 nm at the coercive field of -0.55 T. The field dependence of lC can be described by a model that takes into account the convolution relationship between the nuclear and the magnetic microstructure.

Published in:

Applied Physics Letters  (Volume:102 ,  Issue: 2 )

Date of Publication:

Jan 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.