By Topic

Time-varying two-phase optimization and its application to neural-network learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyun Myung ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Jong-Hwan Kim

In this paper, a time-varying two-phase (TVTP) optimization neural network is proposed based on the two-phase neural network and the time-varying programming neural network. The proposed TVTP algorithm gives exact feasible solutions with a finite penalty parameter when the problem is a constrained time-varying optimization. It can be applied to system identification and control where it has some constraints on weights in the learning of the neural network. To demonstrate its effectiveness and applicability, the proposed algorithm is applied to the learning of a neo-fuzzy neuron model

Published in:

IEEE Transactions on Neural Networks  (Volume:8 ,  Issue: 6 )