Cart (Loading....) | Create Account
Close category search window
 

Recurrent neural nets as dynamical Boolean systems with application to associative memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Watta, P.B. ; Dept. of Electr. & Comput. Eng., Wayne State Univ., Detroit, MI, USA ; Wang, K. ; Hassoun, M.H.

Discrete-time/discrete-state recurrent neural networks are analyzed from a dynamical Boolean systems point of view in order to devise new analytic and design methods for the class of both single and multilayer recurrent artificial neural networks. With the proposed dynamical Boolean systems analysis, we are able to formulate necessary and sufficient conditions for network stability which are more general than the well-known but restrictive conditions for the class of single layer networks: (1) symmetric weight matrix with (2) positive diagonal and (3) asynchronous update. In terms of design, we use a dynamical Boolean systems analysis to construct a high performance associative memory. With this Boolean memory, we can guarantee that all fundamental memories are stored, and also guarantee the size of the basin of attraction for each fundamental memory

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 6 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.