Cart (Loading....) | Create Account
Close category search window
 

An overlapping tree approach to multiscale stochastic modeling and estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Irving, W.W. ; Inf. Technol. Div., Alphatech Inc., Burlington, MA, USA ; Fieguth, P.W. ; Willsky, A.S.

Recently, a class of multiscale stochastic models has been introduced in which random processes and fields are described by scale-recursive dynamic trees. A major advantage of this framework is that it leads to an extremely efficient, statistically optimal algorithm for least-squares estimation. In certain applications, however, estimates based on the types of multiscale models previously proposed may not be adequate, as they have tended to exhibit a visually distracting blockiness. We eliminate this blockiness by discarding the standard assumption that distinct nodes on a given level of the multiscale process correspond to disjoint portions of the image domain; instead, we allow a correspondence to overlapping portions of the image domain. We use these so-called overlapping-tree models for both modeling and estimation. In particular, we develop an efficient multiscale algorithm for generating sample paths of a random field whose second-order statistics match a prespecified covariance structure, to any desired degree of fidelity. Furthermore, we demonstrate that under easily satisfied conditions, we can “lift” a random field estimation problem to one defined on an overlapped tree, resulting in an estimation algorithm that is computationally efficient, directly produces estimation error covariances, and eliminates blockiness in the reconstructed imagery without any sacrifice in the resolution of fine-scale detail

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 11 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.