Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Analysis and implementation of a neuromuscular-like control for robotic compliance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wu, C.-H. ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Kao-Shing Hwang ; Shih-Lang Chang

In comparison with robot manipulators, primate limbs excel robots in facile movements requiring compliance control. Based on this fact, this paper will extend our findings in modeling the muscle-reflex mechanism of primate limbs to robotic control. After some salient properties of the neuromuscular system were identified, a neuromuscular-like model that can accurately emulate different involuntary and voluntary movements was developed. To link the findings from the biological system to robotic control, the developed neuromuscular-like controller was implemented on a PUMA 560 robot. The experimental results demonstrated that the emulated spindle-reflex model in the neuromuscular-like controller acts as an impedance to any changing displacement and will comply and enhance the needed compliant forces or torques for the changing motion. Due to this force-enhancement property, no external force sensor is required for sensing force feedback in this control. The capability in performing various free and constrained movements demonstrated that a neuromuscular-like control is very useful for robotic applications requiring adaptation

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:5 ,  Issue: 6 )