By Topic

A SOI-RF-CMOS technology on high resistivity SIMOX substrates for microwave applications to 5 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
D. Eggert ; Fraunhofer-Inst. of Microelectron. Circuits & Syst., Dresden, Germany ; P. Huebler ; A. Huerrich ; H. Kueck
more authors

A silicon-on-insulator (SOI) RF complementary metal-oxide-semiconductor (CMOS) technology for microwave applications up to 5 GHz has been developed. The technology is based on ultra large scale integration (ULSI) CMOS processing using a high resistivity separation through implanted oxygen (SIMOX) substrate of typically 10 kΩcm. Dedicated RF n-channel and RF p-channel MOSFET's with an effective channel length of 0.20 and 0.40 μm have been fabricated using a multiple gate finger design. Maximum frequencies of operation f max of 46 GHz (NMOS) and 16 GHz (PMOS) have been measured. Metal-Insulator-Metal (MIM) capacitances with up to 63 pF with 70 nF/cm 2, planar inductances with up to 25 nH and a quality factor up to 12 and coplanar waveguides with a loss <2.8 dB/cm at 5 GHz are monolithically integrated in the technology without additional processes and materials. Using this SOI-CMOS technology we have fabricated integrated silicon RF circuits, e.g., amplifiers, oscillators, and mixers, operating in the 2 GHz range

Published in:

IEEE Transactions on Electron Devices  (Volume:44 ,  Issue: 11 )