Cart (Loading....) | Create Account
Close category search window

Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kashani, M.A. ; Ozyegin Univ., Istanbul, Turkey ; Safari, M. ; Uysal, M.

Relay-assisted free-space optical (FSO) transmission exploits the fact that atmospheric turbulence fading variance is distance dependent and yields significant performance gains by taking advantage of the resulting shorter hops. In this paper, we investigate how to determine optimal relay locations in serial and parallel FSO relaying so as to minimize the outage probability and quantify performance improvements obtained through optimal relay placement. We further present a diversity gain analysis for serial and parallel FSO relaying schemes and quantify their diversity advantages in terms of the number of relays and channel parameters.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.