Cart (Loading....) | Create Account
Close category search window

All-GaAs/AlGaAs readout circuit for quantum-well infrared detector focal plane array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Umansky, Vladimir ; Dept. of Condensed Matter, Weizmann Inst. of Sci., Rehovot, Israel ; Bunin, G. ; Gartsman, K. ; Sharman, C.
more authors

We report the fabrication and testing of an all-GaAs/AlGaAs hybrid readout circuit operating at 77 K designated for use with an GaAs/AlGaAs background-limited quantum-well infrared photodetector focal plane array (QWIP FPA). The circuit is based on a direct injection scheme, using specially designed cryogenic GaAs/AlGaAs MODFET's and a novel n+ -GaAs/AlGaAs/n+-GaAs semiconductor capacitor, which is able to store more than 15 000 electrons/μm2 in a voltage range of ±0.7 V. The semiconductor capacitor shows little voltage dependence, small frequency dispersion, and no hysteresis. We have eliminated the problem of low-temperature degradation of the MODFET I-V characteristics and achieved very low gate leakage current of about 100 fA in the subthreshold regime. The MODFET electrical properties including input-referred noise voltage and subthreshold transconductance were thoroughly tested. Input-referred noise voltage as low as 0.5 μV/√Hz at 10 Hz was measured for a 2×30 μm2 gate MODFET. We discuss further possibilities for monolithic integration of the developed devices

Published in:

Electron Devices, IEEE Transactions on  (Volume:44 ,  Issue: 11 )

Date of Publication:

Nov 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.